
University College London &
the Ohio State University

Module Code
Module Name

microRNA expression profiles in
human brain autopsy tissues

Christoph Sadée (15084362) May 12, 2016

Abstract

Divo.R is a R package used to analyse the diversity and similarity overlap between
populations applicable to biological systems. Next generation sequencing produces large
scale data often beyond the capabilities of divo.R using a standard desktop. A re-
implementation of the current R extension, python into C reduced the run time for a
6208⇥1024 data table from +2hrs to 137seconds. The validity of the result was tested
against previous published data. The new implementation was then used to analyse micro
RNA data from ten brain regions from ten people. Dendrograms highlighted a particular
microRNA, with potential implications of stroke therapy. This microRNA clustered with
2 other microRNAs which might also be important.

Acknowledgements

Dr. Maciej Pietrzak

Thanks to Dr. Pietrzak and his great help in explaining the python version of divo.R and also
with many other things.

Ms. Katherinne Hartmann

Thanks to Ms. Hartmann, for taking the time and explaining the biological data in depth and
helping to post process my results.

Prof. Grzegorz Rempala

Thanks to Prof. Rempala for inviting me to OSU, suggesting this project to me and acting as
my mentor.

Prof. Peter Scambler

Thanks to Prof. Scambler for acting as my supervisor in UCL and his helpful attitude.

CONTENTS Christoph Sadée

Contents

1 Introduction 4

2 MicroRNA (miRNA) 4
2.1 MiRNA biogenesis . 4
2.2 MiRNA mechanism . 6

3 MiRNA data 6

4 Mathematical Method 7

5 Coding 9
5.1 R extension to C . 10
5.2 Structure . 11

6 Results and Discussion 14
6.1 Validation . 14
6.2 Speed improvement . 14
6.3 miRNA . 15

7 Conclusion 17

8 Afterword 18

References 18

3

Christoph Sadée

1 Introduction

MicroRNAs were recently discovered to be important in regulating gene expression, adding an
additional control layer. MicroRNAs are well expressed in the brain, suggesting a link between
the brain complexity and usage of additional control of protein regulation. Their length of 19 to
22 nucleotides is su�cient to target specific mRNAs for degradation. Importantly miRNAs often
target multiple mRNAs and each mRNA is in turn regulated by multiple microRNAs, making
the system quite complex and requiring mathematical modelling. To analyse the expression
levels in di↵erent brain regions several mathematical overlap functions were implemented into
an R package, called divo.R, allowing the user to group co-expressed microRNAs that may be
functionally related to one another. Divo.R had been implemented in R and was then transfered
to Python with a R wrapper for improved speed. Still unable large, next generation sequencing,
data sets, a third version is implemented here in C with a R wrapper, promising a significant
decrease in computing time.

2 MicroRNA (miRNA)

MicroRNAs (miRNA) are a type of non-coding RNAs, with a length of 19 to 25 nucleotides.
Non-coding RNAs do not code for proteins but have a variety of di↵erent functions. MiRNA
were observed to up- or down regulate protein coding genes, mainly at the translational level
from mRNA to protein, by degradation of mRNA. Regulation was shown to a↵ect embryonic
development, di↵erentiation, cell proliferation, stem cell renewal apoptosis and metabolism[1],
hence the occurrence of aberrant miRNA or abnormal levels of miRNA is linked to several
human diseases such as schizophrenia, psoriasis, diabetes and obesity[1]. Dysfunction of miRNA
can be observed in Gliomas, a type of brain tumor, categorised into four di↵erent grades, based
on their malignancy (I,II,III,IV). MiRNAs with pro-oncogenic properties, miR-21 and miR-23a,
and anti-oncogenic properties, miR-7 and miR-137, were observed to increase and decrease
respectively in glioma with increasing severity [11]. MiR-650 was found to increase in invading
glioma cells and is therefore a suggested prognostic indicator for glioma[21]. About 70% of
known miRNAs are observed to be expressed in the brain, but are often not brain specific. The
complexity of the brain and the abundance of miRNA suggests another regulatory layer and
indeed studies have shown that microRNAs are involved in development and function of the
brain and controlling neuronal proliferation [22].

2.1 MiRNA biogenesis

MiRNAs are encoded in introns and exons of protein coding or non-coding genes (such as long
non-coding RNAs; lncRNA), and intergenic regions. A sequence of DNA is transcribed by
polymerase II and III to pre-mRNA and contains intronic and exonic regions. Introns are spliced
out by the splicosome [7] as seen in Figure 2.1 and as previously mentioned can form primary
transcripts miRNA (pri-miRNA).

4

2 MICRORNA (MIRNA) Christoph Sadée

Figure 2.1: Splicing of pre-mRNA to mRNA [3]

Figure 2.2: Stem loop structure [4]

Pri-mRNA has a length of several kilobases and still possesses a 5’ CAP (start of intron, with
a guanine) and a 3’ polyadenylated tail (end of intron, with several adenosine monophosphates).
It is looped into a stem loop of which a short representation is shown in Figure 2.2. Nuclear
cleavage takes place by the Drosha RNase III endonuclease enzyme. Endonuclease indicates
an enzyme that cuts within a sequence of nucleotides whereas exonucleases cut either at the 5’
or the 3’ end. Drosha is guided by binding protein DGCR8 [10], which recognises the double
stranded RNA (dsRNA) of the stem loop, and cleaves its overhang, leaving a staggered cut
with a 5’ phosphate at one end and a 2 nucleotide 3’ extension at its other end [6][14], and
a resemblance to a hairpin in its structure. It’s now referred to as the precursor miRNA
(pre-mRNA) with about 70 to 100 nucleotides and exported to the cytoplasm by Exportin-5 and
Ran-GTP for further processing [17]. In the cytoplasm the loop of the pre-mRNA is cleaved by
another RNase III endonuclease, Dicer, leaving a dsRNA or by an Argonaute protein, Ago2, an
essential component of the RISC complex discussed in more length in the next section. In the
case of Dicer, cleavage is guided by another binding protein TRBP (trans-activation response
RNA-binding protein) [13], allowing Dicer to cut both ends two helical turns away from the
base of the stem loop [5]. The remaining dsRNA contains the mature miRNA with a length of
19 to 25 nucleotides and its opposing arm, labeled miRNA*. The miRNA:miRNA* is short lived
and brakes down to two separate single stranded RNAs. miRNA* is then further decomposed
which can be deduced from its much lower frequency in libraries⇤ as shown in [15]. An overview
of the full process is given in Figure 2.3

⇤In this context libraries refer to the prepared sample, ready for sequencing. RNA sequencing is a very fragile
process since it is readily decomposed by proteases, commonly found in the surrounding. Out of that reason
RNA is first converted to it’s complementary cDNA, a much more stable compound for sequencing.

5

2.2 MiRNA mechanism Christoph Sadée

Figure 2.3: MiRNA biogenesis pathway and function [1]

2.2 MiRNA mechanism

MiRNA primarily down regulates protein coding genes by degrading the protein at the transla-
tional stage, such as through cleavage of mRNA, sequestration of mRNA into P bodies from
ribosomes and translational repression although other mechanisms are also suggested such as
transcriptional silencing [16][18][5]. MiRNA is loaded onto a RISC protein with the aid of
Argonaute (AGO) proteins and glycine- tryptophan proteins, forming the miRISC compound
[23][12]. In the case of cleavage, miRISC will bind to the 3’UTRs of mRNA and cleave the
protein. The mRNA fragments are then further degraded. There have been reports about
binding to 5’UTRs and the mRNA coding regions as well. For translational repression, miRISC
also bind to the 3’UTRs in the mRNA. These will inhibit ribosomal translation or immediately
degrade the newly formed polypeptide [5].

3 MiRNA data

MiRNA data was obtained from the Pharmacogenetics lab in OSU. It contained precursor
miRNA data as well as miRNA data. It was collected from ten patients, five non smokers, five
non smokers. For each patient ten brain regions were analysed of which the following nine were
important for miRNA analysis BA10, BA22, Insula, Amygdala, Hippocampus, P. Putamen,

6

4 MATHEMATICAL METHOD Christoph Sadée

Raphe Nucleus, Cerebellum. Further information about the data set can be found in [?], where
an overview of all the collected RNA is given.

4 Mathematical Method

The mathematical methods implemented to analyse the overlap of species in a population such
as miRNA in a human population are primarily covered in [?].
Consider n populations c1, c2, c3, ...cn, corresponding to the individual brain regions analysed
for each patient in the miRNA data. There were ten regions analysed for 10 patients, yielding
a hundred populations (n=100). Each population has m species associated with it. For the
miRNA data, species refers to miRNAs detected per brain region per patient. Note that the
data can also be transposed, allowing the analysis of the miRNA populations with di↵erent brain
regions per patient as species. The overlap of each column with each other column is computed
using an overlap index, i.e. column c1 vs c2. An overlap index, calculates the similarity between
two data columns. This can be done by the widely accepted Jaccard index (JI) and Sorensen
index (LI), widely used in ecology and immunology. Both are very similar but the Sorensen
index can be consider to be a semimetric version of the Jaccard index. First consider the pair of
populations (c1, c2), J and L are given by:

JI(c1, c2) =

P
min(ci,1, ci2)P

(ci1 + ci2)�
P

(ci1, ci2)
(4.1)

LI(c1, c2) =
2
P

min(ci,1, ci2)P
(ci1 + ci2))

(4.2)

Next consider the Renyi divergence for normalised populations.

RI(c1, c2) =
2
P ck1P

ci1
ck2P
ci2

P
k

⇣
ck1P
ci1

⌘2

+
P

k

⇣
ck2P
ci2

⌘2 (4.3)

Two population columns can also be considered as vectors, having direction and magnitude. A
large angle between the two vectors (hence pointing in di↵erent directions), indicates dissimilarity
between the populations columns and therefore small overlap between the populations based
on their species content. The Morisita-Horn index uses the cosine of the angle between the
standardised population vectors p1 and p2 and is given by:

MH(p1, p2) =
2p1p2
p21 + p22

(4.4)

Unfortunately Equation (4.4) is very sensitive to frequent species within the columns. There-
fore data with rare species is not well suited for the Morisita-Horn index.

The I-index is the most suited for measuring the overlap across multiple populations such as
in the miRNA data. It measures the strength of dependence between marginals P0 and P 0 of
the population table C.

INP (C) = 1� H1(P0) +H1(P 0)�H1(P)

H1(P0)
(4.5)

where P0 = (p01, ...p0n) and P 0 = (p10, ...pn0) are elements of the normalised population
table. H1 stands for the Shannon entropy given by

7

Christoph Sadée

H1(p) = �
X

pi log pi (4.6)

Note that although overlap is computed across multiple population in INP, its input still
only requires two population columns at a time of the population table.

8

5 CODING Christoph Sadée

5 Coding

Coding was the main focus of this project, implementing the mathemtical methods for diversity
overlap as stated in Section 4 and improving on the already existing code divo.R”[19]. So
far divo.R was implemented in R and then transferred from R to the Python language. This
was done in order to improve on speed from a much slower implementation purely in R. The
user does not directly interact with Python but calls Python through a complicated and time
expensive interface Rcpp and Rcppnpy. In C extensive use of C pointers to arrays and pointer
to row of pointers to arrays was made. A pointer saves stores an address, the address in turn is
pointing to the first element of an array. Since every array element is saved in order, one can
access each element of an array by advancing the pointer. Knowledge of heap and stack was
used to create and free memory e�ciently. A table of all custom R functions used is given below

Library Source Used for

nrutil.h Numerical Recipes Allocating mathematical
structures in memory with
pointer to pointer structure

Rdefines.h R standard library Import for R specific ob-
jects, includes Rinternals.h

R.h R standard library Required for any R to C
extension

Rmath.h R standard library Includes standard math.h
library and rmultnom.h

string.h C standard library strcmp.h for comparing
strings

stdlib.h C standard library For memmory allocation

stdio.h C standard library printf.h for printing vari-
ables to the screen

9

5.1 R extension to C Christoph Sadée

5.1 R extension to C

The R language is written to 50% in C, 30% in Fortran and 20% in it’s own language. This
is done since C and Fortran are much faster at processing data than R. An example is the
rmultnom function, that draws random numbers that are obeying the multinomial distribution
in R. When executing this command, R will call a C file called ”rmultnom.c”, which will do the
computation and then dump the result to R. The user will not realise that C was called and used
to compute the output, which makes the whole process user friendly. Due to the large amount
of R functions written in C, a very e�cient interface or R extension was written for C. Allowing
variables, arrays and other R objects to be passed to C. The library used for this extension is
provided by R, when installing R. A list of all custom libraries† The documentation of these
functions is sparse and only overviews of the function names were found. The R extension
manual[9] is the basic manual for any extension such as Fortran, Cpp, C, Python, Java and
further but is lacking sometimes in useful examples. The advantage of importing data from R
to C compared to R to python, is that no actual data is passed. Only a pointer, pointing to
the first element of the data structure, such as a string (string means an array of characters,
i.e. a word), vector or matrix is passed to C. This is highly e�cient since only the pointer
and therefore the variable storing the address of the pointer has to be passed to C instead of
the whole data structure. To fully understand, consider a pointer of type ”double”, which can
store an address for a double value such as any decimal number with up to 15 decimal places.
The pointers size in memory is 4bytes (depended on system), a very small amount of memory.
Comparing this to importing the actual data matrix which can have thousands of entries, each
with a double value of size 8bytes. This would take a long time to import since memory has to
be allocated and then the values transferred, one at a time. This is done for the R to Python
extension, with an additional caveat. The data structure first has to be stored in storage (not
RAM but i.e. hard drive), by saving the data in a file on R and then reading this file into
Python. This process is slower by up to a magnitude as compared when only storing in RAM.
But also the increased e�ciency of using C from R has a caveat, concerning the usage of the
imported variables. Since a pointer is passed to C and not the actual data, any change to the
data will result also in a change in the variable in R. This is not an issue, one simply has to
remember that any change should be saved in a new location, if saved at all.
An abstract of an R imported variable is given in Listing 1.

40 //Reading in X var i ab l e���
41 // Protect v a r i a b l e s so that R doesn ’ t d e l e t e them
42 PROTECT(X = AS INTEGER(X)) ; nprot++;
43 // Def in ing po i n t e r s and a s s i gn i ng them to v a r i a b l e s
44 i n t ∗ ptrX ; ptrX = INTEGER(X) ;
45 // Def in ing po i n t e r s and a s s i gn i ng them to v a r i a b l e s
46 SEXP dimX ; PROTECT(dimX = a l l o cVec t o r (INTSXP, 2)) ; nprot++;
47 i n t ∗ ptrdimX ; ptrdimX=INTEGER(dimX) ;
48 ptrdimX [0]=INTEGER(GET DIM(X)) [1] ; ptrdimX [1]=INTEGER(GET DIM(X)) [0] ;
49 // l ength o f X array
50 i n t nX; nX = ptrdimX [0] ∗ ptrdimX [1] ;

Listing 1: Importing R objects

Note that each imported variable and created array has to be protected in C from R’s
garbage collector and later unprotected before returning to R. The imported objects from R are
labeled as SEXP, which stands for S-EXPression, the precursor to R. These objects contain the
address to the first element of the array and their dimensions in case of a matrix.

†Here library means a collection of c files that are clustered into one library that one can download.

10

5 CODING Christoph Sadée

miRNA \ ID 1 1 1 2 1 4 1 5 1 6 1 7 1 8

pre-miRNA 29b-1 13409 6340 1526 7924 2186 6908 5026

miRNA 29b-3p 12931 5804 1314 7103 1666 5873 3989

miRNA 103a-3p 8765 8214 5936 14405 6586 10964 10887

miRNA mir-138 6947 7972 1862 8135 4763 13139 3167

Table 5.1: Sample Table data

5.2 Structure

Divo.R was fully restructured for speed and memory e�ciency. The I-index function (INP) will
serve as an example, it measures the overlap between populations as stated in the math section.
In the case of the miRNA data, consider humans and their brain regions (population) with their
corresponding measured miRNAs level (species)‡ as given in the sample table Table 5.1.

The data is first read into R and then passed to C. In C a pointer is assigned to the first
element of the data. In case of table Table 5.1 corresponding to ”13409”. R saves it’s variables
column wise, hence meaning that in memory the end of the first column is joint to the start of
the next column. The data is saved in memory as represented in Figure 5.1.

0 1 2 3 4 5 6 7 ... 24 25 26 27

13409 12931 8765 6947 6340 5804 8214 7972 ... 5026 3989 10887 3167

Column 0 Column 1 Column 6

Array of length 28

Pointer address

Figure 5.1: R Matrix saved in memory

At first glance, this seems non beneficial since C usually saves multi dimensional arrays row
wise when initialised in C and not column wise. A possible solution is to transpose the matrix.
But this requires the reallocation of each data point to a new address with two for-loops, a
time consuming process. Instead, realising that when performing I-index analysis (or any other
analysis, i.e. MH or JI) that only two columns are compared at a time, concludes that the
structure is beneficial for the analysis. A very useful pointer to pointer to column structure was

‡Note that this can also be inverted, with miRNAs as population and human brain regions as species

11

5.2 Structure Christoph Sadée

adopted. This allows access to the first element of each column and therefore the possibility to
select columns individually as seen in Figure 5.2.

0

0 1 2 3 4 5 6

0 4 8 12 16 20 24

0 1 2 3 4 5 6 7 ... 24 25 26 27

13409 12931 8765 6947 6340 5804 8214 7972 ... 5026 3989 10887 3167

Column 0 Column 1 Column 6

Pointer to Array of Pointers

Array of Pointers to Cols

Figure 5.2: Pointer to Pointer to Column

The structure allows one to select one column at a time without unnecessary data allocation.
The structure of pointers access the same memory slots as initially allocated in R. This is very
e�cient and a column can now be passed to a function via its pointer. Next a resample plugin is
implemented, which allows the data to be resampled. This is done by computing the probability
of each population value and then drawing them randomly from a multinomial distribution.
The probabilities are evaluated by summing the whole data and then dividing each value by the
total sum. This is taken as input for the ”rmultinom.c” function, part of the ”Rmath.h” library,
which will redraw the data values. Resampling has the benefit that for a large numbers of
resample runs (min. of 500 with no upper limit) the upper and lower quantile can be computed,
showing if the clustering is stable, where clustering is the final result of the I-Index function or
any other analysis function.

ith Resampled data matrix

500th Resampled data matrix

1st Resampled data matrix

Original data matrix
Draw numbers

Figure 5.3: Resampled data matricies

12

5 CODING Christoph Sadée

Figure 5.3 shows the resampled data matricies. Since each column of a matrix is analysed
one at a time and each matrix individually, it is not necessary to save all matricies at the same
time. For using as little memmory as possible, a single data matrix is drawn (or resampled),
then analysed and it’s result saved before a new data matrix is drawn. Each new matrix is
saved in the same memory location as the first matrix by overwriting it.
How does this compare to the previous version of divo and it’s python implementation? After
a data file is read into python the values are transposed to bring them into the correct order.
Then all matrices are drawn at the same time, yielding a 3D matrix. This is ine�cient in regards
to speed and memory.
Making use of the new implemented data structures, individual columns of a single data matrix
can be selected and analysed using any of the analysis functions. Each column has to be
compared with each other column. This is computationally intensive analysis, since any analysis
performed for two columns has to be repeated for every possible combination of columns times
the amount of resampled matrices. For a matrix of four columns, there are six possible column
combinations for analysis [1, 2][1, 3][1, 4][2, 3][2, 4][3, 4], if then resampled 500 times it will result
in 30.000 analysis’ that have to be performed. Most realistic data sets compare far more than
four columns. The miRNA data has roughly 400 columns to be analysed. According to the
binomial coe�cient and 500 resamples this would accumulate to:

✓
n

k

◆
=

n!

k!(n� k)!
)

✓
400

2

◆
⇥ 500 = 39.900.000 (5.1)

Now considering that each analysis between two columns by the I-index function or any
of the other analysis functions will take several internal steps, will result in an even greater
number of operations that have to be performed. Hence an e�cient C implementation is critical
as genomic data is increasing in scale.

Two pointers, pointing to two di↵erent columns within a data matrix are passed to any
analysis function such as I-index. Each of the functions after analysis of the two input columns
will return a single value, a measure of how similar both columns are (total similarity of species
in the population). Each of these values has to be placed into a column⇥column table. A
sample of such a matrix is given below.

Column 0 1 2 3 4 5 6

0 0 V0 V1 V2 V3 V4 V5

1 0 0 V6 V7 V8 V9 V10

2 0 0 0 V11 V12 V13 V14

3 0 0 0 0 V15 V16 V17

4 0 0 0 0 0 V18 V19

5 0 0 0 0 0 0 V20

6 0 0 0 0 0 0 0

Figure 5.4: Column table

13

Christoph Sadée

The matrix in Figure 5.4, is half filled with zeros and half filled with V’s indicating that
values from an analysis function will be placed into these cells. Row index 1 and column index
2 represents a comparison between column 1 and column 2. Row index 1 and column index 2
would yield the same data as row index 2 and column index 1 (since comparing column 1 with
2 is the same as comparing column 2 with 1) and is therefore excluded and filled with a zero.
Figure 5.4 will be the final structure returned from C to R. Therefore it is important to fill
this table as e�cient as possible when using many resampled matrices. Each resampled matrix
can be grouped into a table such as Figure 5.4. All column tables are then added at their
corresponding cells and averaged. This will yield the mean values in each V cell node and the
final output column table. Additionally two other column tables can be extracted, corresponding
to the lower and upper quantile, representing the values that diverge the most from the mean
table in the lower and upper limit§.
Instead of grouping each resampled matrix into a column table and then averaging, a more
memory e�cient array arrangement was used. All values from every analysed resampled matrix
is saved in a long array and therefore all zero values can be left out, saving half of the memory.

0 1 2 ... 19 20 21 22 23 24 25 26 27

V0 V1 V2 ... V19 V20 V0 V1 V2 V3 V4 V5 ...

Result of Resample matrix 1 Result of Resample matrix 2 ...

Pointer address

Figure 5.5: Results from Resample matrices

All V0 values from each resample matrix result can then be added and averaged. This is
repeated with every V value. The result will be an array containing the mean values of all V
values. The array is then filled into a column table and returned to R.

6 Results and Discussion

6.1 Validation

The new C implementation was tested against a dataset prior analysed with divo.R and the
python extension. The data set covered naive and regulatory T-cell receptors from di↵erent
tissue types in a specific mouse model. The di↵erent populations were Naive and Regulatory
T-cell receptor type from colon, thymus, mesenteric lymph node and peripheral lymph node.
The analysis yielded the same data and an identical dendrogram Figure 6.1 as in [8], validating
the correctness of the code.

6.2 Speed improvement

A 1.3 GHz Intel Core i5 and 8GB of RAM computer was used to analyse the TCR data with
eight columns and 6208 rows. To test the improved speed the data was appended to itself seven
times, resulting in a 6208 rows to 1024 column. No resampling was performed. Hence yielding

§If all 3 column tables give rise to widely di↵erent plots in post-processing then this is an indication for data
that is similar and will form clusters due to small variations. Care has to be taken for such data sets.

14

6 RESULTS AND DISCUSSION Christoph Sadée

523,776 analysis operations. The run time analysis gave: 137.2 seconds, which is marginally
above two minutes. Compared to the python version which was aborted after 2hrs of run time.
This clearly shows how important good code design is and C compared to high level languages.

Figure 6.1: TCR data dendrogram

6.3 miRNA

The miRNA data was analysed with the I-index to cluster similarity between the populations of
patients across brain regions and resampled 500 times to test for stability. The data had 406
columns for analysis resulting in 41,107,500 analysis operations. This took about 20 minutes to
run on a laptop with 1.3 GHz Intel Core i5 and 8GB, using the newly implemented version of
divo.R. The output column tables for the mean, lower quantile and upper quantile were plotted
in R using the ”hclust” function to graph a dendrogram Figure 6.2. The y scale indicates
distance, increase indicating dissimilarity between populations. Clusters are formed between
co-expressed populations. hence forming clusters between species that are closely co-expressed.

15

6.3 miRNA Christoph Sadée

Figure 6.2: miRNA, mean, upper and lower quantile for 500 resamples

Note that the clustering between upper and lower quantile majorly change in Figure 6.2,
and hence are diverging. This can mean that small changes (introduced to resampling) can
alter clustering and should therefore be carefully monitored. Indicating that di↵erence between
species in the population is small.

For further analysis precursor miRNA was excluded and the miRNA expression data re-
analysed with the I-index and no resamples, Figure 6.3.

16

7 CONCLUSION Christoph Sadée

Figure 6.3: MiRNA clusters, URS-es are di↵erent database IDs referring
to the same miRNA.

Figure 6.4: Mir-
RNA sub-cluster

A small subsection of Figure 6.3, having a distinct cluster with a large separation to other
clusters, was chosen and replotted in Figure 6.4. The cluster contains three distinct miRNAs.
MiRNA-197-3p, miRNA-320 and miRNA-204-3p. Each of the three miRNA has several hundred
recorded mRNA targets, however only 4 are shared among these miRNAs. MED7, NABP1,
ONECUT2, PAPD5. These were obtained using Targetscan[2]. Of interest among the three
miRNAs in this cluster is miRNA-320, which is di↵erentially expressed in stroke patients and
a rat model of ischemia[20]. In vitro analysis shows this relationship may be attributable to
regulation of aquaporins, that control movement of water into the cell. This miRNA has been
suggested as a possible drug target for treatment of stroke. For all 100 targets of miRNA-320
the R package biomaRt was used to identify the associated GO IDs. Among the top ten most
frequent GO IDs was nervous system development. MiRNA-320 is clearly associated with
nervous system physiology and disease. Understanding miRNA clustered with miRNA-320 could
provide important insight into neurological disease. Further analysis is required.

7 Conclusion

Divo.R was improved in several ways. It’s structure was adapted to be more memory e�cient,
allowing it to handle large data tables. The total amount of operations per analysis function
was reduced and all unnecessary data transformations in the python structure excluded. The
speed improvement is by a factor of 60, from 2hrs to 137 seconds, allowing the usage of large

17

Christoph Sadée

data sets. Clustering performed by divo.R can be used to add additional miRNAs to already
recognised miRNAs as was found with miRNA-197-3p and miRNA-204-3p with miRNA-320.
MiRNA-320 was shown by in-vitro analysis as a potential drug target for stroke. Future work is
required whether the two additional miRNAs provide additional insight into stroke or serve as
drug targets.

8 Afterword

The project at Ohio State University was exciting although hard. Coding in a low level language
such as C with only minor prior knowledge in C++ was very time consuming. C does not
provide many build in functions, adding to its di�culty. The package will be soon ready to be
send to CRAN for analysis. If accepted I will be mentioned as co-author of the divo.R package,
a great outcome for such a short project. Possibly the miRNA data analysed, will contribute
towards a paper.

References

[1] Yogita K Adlakha and Neeru Saini. Brain micrornas and insights into biological functions
and therapeutic potential of brain enriched mirna-128. Molecular cancer, 13(1):1, 2014.

[2] Vikram Agarwal, George W Bell, Jin-Wu Nam, and David P Bartel. Predicting e↵ective
microrna target sites in mammalian mrnas. Elife, 4:e05005, 2015.

[3] Unknown Author. Splicing of pre-mrna to mrna. http://www.phschool.com/science/
biology_place/biocoach/transcription/images/eusplice.gif.

[4] Unknown Author. Splicing of pre-mrna to mrna. http://www.mikeblaber.org/oldwine/
BCH4053/Lecture21/stemloop.jpg.

[5] David P Bartel. Micrornas: genomics, biogenesis, mechanism, and function. cell, 116(2):281–
297, 2004.

[6] Eugenia Basyuk, Florence Suavet, Alain Doglio, Rémy Bordonné, and Edouard Bertrand.
Human let-7 stem–loop precursors harbor features of rnase iii cleavage products. Nucleic
acids research, 31(22):6593–6597, 2003.

[7] JM Berg, JL Tymoczko, L Stryer, and GJ Gatto. Biochemistry (7ma. ed., p. 773), 2012.

[8] Anna Cebula, Michal Seweryn, Grzegorz A Rempala, Simarjot Singh Pabla, Richard A
McIndoe, Timothy L Denning, Lynn Bry, Piotr Kraj, Pawel Kisielow, and Leszek Ignatowicz.
Thymus-derived regulatory t cells contribute to tolerance to commensal microbiota. Nature,
497(7448):258–262, 2013.

[9] CRAN. Writitng r extensions. https://cran.r-project.org/doc/manuals/r-release/
R-exts.html.

[10] Jinju Han, Yoontae Lee, Kyu-Hyun Yeom, Young-Kook Kim, Hua Jin, and V Narry
Kim. The drosha-dgcr8 complex in primary microrna processing. Genes & development,
18(24):3016–3027, 2004.

18

http://www.phschool.com/science/biology_place/biocoach/transcription/images/eusplice.gif
http://www.phschool.com/science/biology_place/biocoach/transcription/images/eusplice.gif
http://www.mikeblaber.org/oldwine/BCH4053/Lecture21/stemloop.jpg
http://www.mikeblaber.org/oldwine/BCH4053/Lecture21/stemloop.jpg
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html

REFERENCES Christoph Sadée

[11] PA Koshkin, DA Chistiakov, AG Nikitin, AN Konovalov, AA Potapov, DY Usachev,
DI Pitskhelauri, GL Kobyakov, LV Shishkina, and VP Chekhonin. Analysis of expression
of micrornas and genes involved in the control of key signaling mechanisms that support or
inhibit development of brain tumors of di↵erent grades. Clinica chimica acta; international

journal of clinical chemistry, 430:55, 2014.

[12] Jacek Krol, Inga Loedige, and Witold Filipowicz. The widespread regulation of microrna
biogenesis, function and decay. Nature Reviews Genetics, 11(9):597–610, 2010.

[13] Ho Young Lee, Kaihong Zhou, Alison Marie Smith, Cameron L Noland, and Jennifer A
Doudna. Di↵erential roles of human dicer-binding proteins trbp and pact in small rna
processing. Nucleic acids research, page gkt361, 2013.

[14] Yoontae Lee, Chiyoung Ahn, Jinju Han, Hyounjeong Choi, Jaekwang Kim, Jeongbin Yim,
Junho Lee, Patrick Provost, Olof R̊admark, Sunyoung Kim, et al. The nuclear rnase iii
drosha initiates microrna processing. nature, 425(6956):415–419, 2003.

[15] Lee P Lim, Nelson C Lau, Earl G Weinstein, Aliaa Abdelhakim, Soraya Yekta, Matthew W
Rhoades, Christopher B Burge, and David P Bartel. The micrornas of caenorhabditis
elegans. Genes & development, 17(8):991–1008, 2003.

[16] Jidong Liu. Control of protein synthesis and mrna degradation by micrornas. Current

opinion in cell biology, 20(2):214–221, 2008.

[17] Elsebet Lund, Stephan Güttinger, Angelo Calado, James E Dahlberg, and Ulrike Kutay.
Nuclear export of microrna precursors. Science, 303(5654):95–98, 2004.

[18] Ramesh S Pillai, Suvendra N Bhattacharyya, and Witold Filipowicz. Repression of protein
synthesis by mirnas: how many mechanisms? Trends in cell biology, 17(3):118–126, 2007.

[19] Grzegorz A Rempala and Michal Seweryn. Methods for diversity and overlap analysis in
t-cell receptor populations. Journal of mathematical biology, 67(6-7):1339–1368, 2013.

[20] Sugunavathi Sepramaniam, Arunmozhiarasi Armugam, Kai Ying Lim, Dwi Setyowati
Karolina, Priyadharshni Swaminathan, Jun Rong Tan, and Kandiah Jeyaseelan. Microrna
320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential
therapeutic target in cerebral ischemia. Journal of Biological Chemistry, 285(38):29223–
29230, 2010.

[21] Boqian Sun, Bo Pu, Dake Chu, Xiaodan Chu, Wei Li, and Dun Wei. Microrna-650
expression in glioma is associated with prognosis of patients. Journal of neuro-oncology,
115(3):375–380, 2013.

[22] Davide De Pietri Tonelli, Jeremy N Pulvers, Christiane Ha↵ner, Elizabeth P Murchison,
Gregory J Hannon, and Wieland B Huttner. mirnas are essential for survival and di↵er-
entiation of newborn neurons but not for expansion of neural progenitors during early
neurogenesis in the mouse embryonic neocortex. Development, 135(23):3911–3921, 2008.

[23] Luke A Yates, Chris J Norbury, and Robert JC Gilbert. The long and short of microrna.
Cell, 153(3):516–519, 2013.

19

	Introduction
	MicroRNA (miRNA)
	MiRNA biogenesis
	MiRNA mechanism

	MiRNA data
	Mathematical Method
	Coding
	R extension to C
	Structure

	Results and Discussion
	Validation
	Speed improvement
	miRNA

	Conclusion
	Afterword
	References

